10 research outputs found

    A new least-squares approach to differintegration modeling

    Get PDF
    Signal Processing, Vol. 86, nº 10In this paper a new least-squares (LS) approach is used to model the discrete-time fractional differintegrator. This approach is based on a mismatch error between the required response and the one obtained by the difference equation defining the auto-regressive, moving-average (ARMA) model. In minimizing the error power we obtain a set of suitable normal equations that allow us to obtain the ARMA parameters. This new LS is then applied to the same examples as in [R.S. Barbosa, J.A. Tenreiro Machado, I.M. Ferreira, Least-squares design of digital fractional-order operators, FDA’2004 First IFAC Workshop on Fractional Differentiation and Its Applications, Bordeaux, France, July 19–21, 2004, P. Ostalczyk, Fundamental properties of the fractional-order discrete-time integrator, Signal Processing 83 (2003) 2367–2376] so performance comparisons can be drawn. Simulation results show that both magnitude frequency responses are essentially identical. Concerning the modeling stability, both algorithms present similar limitations, although for different ARMA model orders

    Pseudo-fractional ARMA modelling using a double Levinson recursion

    Get PDF
    IET Control Theory & Applications, Vol. 1, Nº 1The modelling of fractional linear systems through ARMA models is addressed. To perform this study, a new recursive algorithm for impulse response ARMA modelling is presented. This is a general algorithm that allows the recursive construction of ARMA models from the impulse response sequence. This algorithm does not need an exact order specification, as it gives some insights into the correct orders. It is applied to modelling fractional linear systems described by fractional powers of the backward difference and the bilinear transformations. The analysis of the results leads to propose suitable models for those systems

    New insights into pseudo-fractional ARMA modelling

    Get PDF
    Proceedings of the International Conference on Computational Cybernetics, Vienna University of Technology, August 30 - September 1, 2004In this paper the modeling of Fractional Linear Systems through ARMA models is addressed. This study is performed by using a recursive algorithm for Impulse Response ARMA modelling leading us to propose suitable models for this proble

    A new zoom algorithm and its use in frequency estimation

    Get PDF
    This paper presents a novel zoom transform algorithm for a more reliable frequency estimation. In fact, in many signal processing problems exact determination of the frequency of a signal is of paramount importance. Some techniques derived from the Fast Fourier Transform (FFT), just pad the signal with enough zeros in order to better sample its Discrete-Time Fourier Transform. The proposed algorithm is based on the FFT and avoids the problems observed in the standard heuristic approaches. The analytic formulation of the novel approach is presented and illustrated by means of simulations over short-time based signals. The presented examples demonstrate that the method gives rise to precise and deterministic results

    Phytochemical Characterization and Biological Evaluation of the Aqueous and Supercritical Fluid Extracts from Salvia sclareoides Brot

    Get PDF
    Plants belonging to the genus Salvia (Lamiaceae) are known to have a wide range of biological properties. In this work, extracts obtained from the aerial parts of Salvia sclareoides Brot. were evaluated to investigate their chemical composition, toxicity, bioactivity, and stability under in vitro gastrointestinal conditions. The composition of the supercritical fluid extract was determined by GC and GC-MS, while the identification of the infusion constituents was performed by HPLC-DAD and LC-MS. The in vitro cytotoxicity of both extracts (0-2 mg/mL) was evaluated in Caco-2 cell lines by the MTT assay. The anti-inflammatory and anticholinesterase activities were determined through the inhibition of cyclooxygenase-1 and acetylcholinesterase enzymes, while β-carotene/linoleic acid bleaching test and the DPPH assays were used to evaluate the antioxidant activity. The infusion inhibited cyclooxygenase-1 (IC50 = 271.0 μg/mL), and acetylcholinesterase (IC50 = 487.7 μg/ mL) enzymes, also demonstrated significant antioxidant properties, as evaluated by the DPPH (IC50 = 10.4 μg/mL) and β-carotene/linoleic acid (IC50 = 30.0 μg/mL) assays. No remarkable alterations in the composition or in the bioactivities of the infusion were observed after in vitro digestion, which supports the potential of S. sclareoides as a source of bioactive ingredients with neuroprotective, anti-inflammatory and antioxidant properties.This work was supported by Fundação para a Ciência e a Tecnologia (FCT), Project UID/MULTI/00612/2013 and UID/QUI/50006/2013. FCT is also acknowledged for PJAM post-doctoral fellowship (SFRH/BPD/86948/2012) and for CG FCT Investigator (IF/01332/2014). The European Commission is also acknowledged for approval of the INOVAFUNAGEING commitment and the support of the projects PERSSILAA-FP7-ICT-2013-10, Project Nr. 610359, and D3i4AD, FP7-PEOPLE-2013-IAPP, GA 612347. The authors also gratefully acknowledge the collaboration of Prof. Ana Cristina Figueiredo (DBV-FCUL), for GC and GC-MS analysis, and of Prof. Maria Helena Florêncio (DQB-FCUL) for LC-MS support.info:eu-repo/semantics/publishedVersio

    Abstract A New Least-Squares Approach to Differintegration Modeling

    No full text
    In this paper a new least-squares (LS) approach is used to model the discrete-time fractional differintegrator. This approach is based on a mismatch error between the required response and the one obtained by the difference equation defining the auto-regressive, moving-average (ARMA) model. In minimizing the error power we obtain a set of suitable normal equations that allow us to obtain the ARMA parameters. This new LS is then applied to the same examples as in [1] and [11] so performance comparisons can be drawn. Simulation results show that both magnitude frequency responses are essentially identical. Concerning the modeling stability, both algorithms present similar limitations, although for different ARMA model orders. I

    An Experimental Study on Step-Up DC–DC Converters for Organic Photovoltaic Cells

    No full text
    This work studies two circuit topologies to step-up the voltage supplied by an organic photovoltaic (OPV) cell. Comparison and validation of the proposed topologies are accomplished throughout analytical, simulation, and experimental results. Two circuit solutions were found more suitable to boost the harvested OPV cell low voltage, depending on the load condition: the classical hard-switching boost converter and a multilevel boost converter. Both experimental circuits include the drive of the MOSFET switch based on an LC oscillator at 1.2 MHz, allowing the implementation of a conversion system, supplied by voltages as low as 500 mV, with output voltages from 1.2 V up to 7 V, under solar simulator conditions. The circuit area for each converter prototype is 2.35 cm2, with a total area below 3.0 cm2 for the overall energy harvesting system, including the OPV cell, which makes this proposal an extremely compact solution for ultra-low power harvesting applications

    An Experimental Study on Step-Up DC–DC Converters for Organic Photovoltaic Cells

    No full text
    This work studies two circuit topologies to step-up the voltage supplied by an organic photovoltaic (OPV) cell. Comparison and validation of the proposed topologies are accomplished throughout analytical, simulation, and experimental results. Two circuit solutions were found more suitable to boost the harvested OPV cell low voltage, depending on the load condition: the classical hard-switching boost converter and a multilevel boost converter. Both experimental circuits include the drive of the MOSFET switch based on an LC oscillator at 1.2 MHz, allowing the implementation of a conversion system, supplied by voltages as low as 500 mV, with output voltages from 1.2 V up to 7 V, under solar simulator conditions. The circuit area for each converter prototype is 2.35 cm2, with a total area below 3.0 cm2 for the overall energy harvesting system, including the OPV cell, which makes this proposal an extremely compact solution for ultra-low power harvesting applications

    Phytochemical Characterization and Biological Evaluation of the Aqueous and Supercritical Fluid Extracts from Salvia sclareoides Brot

    No full text
    Plants belonging to the genus Salvia (Lamiaceae) are known to have a wide range of biological properties. In this work, extracts obtained from the aerial parts of Salvia sclareoides Brot. were evaluated to investigate their chemical composition, toxicity, bioactivity, and stability under in vitro gastrointestinal conditions. The composition of the supercritical fluid extract was determined by GC and GC-MS, while the identification of the infusion constituents was performed by HPLC-DAD and LC-MS. The in vitro cytotoxicity of both extracts (0-2 mg/mL) was evaluated in Caco-2 cell lines by the MTT assay. The anti-inflammatory and anticholinesterase activities were determined through the inhibition of cyclooxygenase-1 and acetylcholinesterase enzymes, while β-carotene/linoleic acid bleaching test and the DPPH assays were used to evaluate the antioxidant activity. The infusion inhibited cyclooxygenase-1 (IC50 = 271.0 μg/mL), and acetylcholinesterase (IC50 = 487.7 μg/ mL) enzymes, also demonstrated significant antioxidant properties, as evaluated by the DPPH (IC50 = 10.4 μg/mL) and β-carotene/linoleic acid (IC50 = 30.0 μg/mL) assays. No remarkable alterations in the composition or in the bioactivities of the infusion were observed after in vitro digestion, which supports the potential of S. sclareoides as a source of bioactive ingredients with neuroprotective, anti-inflammatory and antioxidant properties
    corecore